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Abstract

A technique for incorporating buoyancy-driven dynamics in a Lagrangian puff model is
described. The dynamic effects are non-linear and therefore proper treatment requires interaction
integrals for overlapping puffs. Conservation laws for the volume integral of momentum and
buoyancy over an individual puff are based on the fundamental equations of motion. A simplified
representation of the field of motion associated with the buoyancy-driven dynamics is then used to
move and distort the puffs. The effects associated with dense gas ‘slumping’ on the ground are
represented by lateral divergence of the velocity field, with a magnitude based on conservation of
the moment of vorticity. The model predictions are compared with a number of experimental
results on buoyant plume rise and dense gas dispersion. q 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Many pollutant releases into the atmosphere involve dynamic flow effects associated
with differences in temperature andror density. One example is the elevated stack
source, where hot gases are emitted as a vertical jet and form a buoyant plume. The
buoyant rise is important since it can strongly influence the effective release height and
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source size for the subsequent atmospheric dispersion. However, buoyancy effects can
be positive or negative. Volatile materials stored under pressure will form a dense cloud
when accidentally released due to cooling associated with the latent heat of vaporization.
Many gases used in industrial processes may have molecular weights larger than air and
are denser than air even at ambient temperatures. In proximity to the ground, a dense
cloud will tend to spread laterally, and the vertical diffusion will be suppressed. This can
give rise to high ground-level concentrations, so the prediction of dense gas dispersion
in the atmosphere is a topic of considerable interest for emergency response and site
safety studies.

The rise of a hot, positively buoyant plume is often prescribed as part of the initial
conditions for the dispersion calculation using analytical expressions such as those in

w xRef. 2 . However, the transition to a passive dispersion code requires an arbitrary choice
for the position at which the dynamics can be neglected. Furthermore, the rise phase
may extend a significant distance downstream from the source location and the plume
concentrations may be required during this period. The Briggs formulae are also
restricted to relatively idealized situations, and do not strictly address factors such as
time-dependent releases or multiple interacting plumes. A more general description
within the Lagrangian puff framework can provide this increased capability.

A number of models currently exist for predicting the evolution of negatively buoyant
w xdense gas releases in the atmosphere. Ref. 5 reviewed a selection of these models and

compared their predictions with a set of experimental observations. The models gener-
ally fall into three categories: Navier–Stokes codes, puffrplume codes and analytic
formulae. The puffrplume models are generally accepted as being the most practical,
since Navier–Stokes codes are too complex and more appropriate for research studies,
while closed analytic formulae are too limited in their application. Within the puffrplume
category, there is a distinction between a continuous release, where a steady-state plume
model is used, and the instantaneous release of a single puff. Transient releases are
sometimes modeled as a finite length section of a plume, but the models do not properly
describe complex effects such as multiple source interactions. As in the buoyant rise
case, a full Lagrangian puff description can provide a more general capability.

The difficulty in representing dynamic effects in a general Lagrangian puff model
w xarises from the non-linear character of the phenomena. The puff approach 1 is based on

the linearity of the advection–diffusion equation, which describes the dispersion of a
passive tracer and allows the concentration field to be formed from the superposition of
independent Lagrangian puffs. However, in the presence of buoyancy-driven dynamics,
the motion of one part of the concentration field cannot be calculated without regard for
the rest of the distribution. The dynamic representation therefore requires an interaction
calculation, so that each puff is influenced by the dynamic properties of other puffs. A
similar interaction requirement is demanded for the representation of the concentration
fluctuation variance, since this is a non-linear quantity, and this has been addressed in

w xthe SCIPUFF model described in Ref. 13 . The puff interaction computation in
Ž .SCIPUFF Second-order Closure Integrated Puff therefore provides a framework for

including non-linear dynamic effects. In the following sections, we describe the puff
representation of these dynamic motions, and illustrate the model predictions for a range
of test flows.
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2. Puff model description

2.1. Mean flow Õariables

SCIPUFF uses a Gaussian puff representation to describe the concentration field as
the sum of contributions from a collection of puffs. A three-dimensional Gaussian is
completely described by its spatial integral moments up to second-order and can be
written in the form

Q 1
y1c x s exp y s x yx x yx . 1Ž . Ž .Ž . Ž .i j i i j j1r23r2 22p Det sŽ . Ž .Ž .

Note that we use a generalized tensor definition of the moments to describe shear
w xdistortions, as described in Ref. 10 .

Using an angle bracket to denote an integral over all space, the spatial moments in
Ž .Eq. 1 are defined as

Zeroth moment—mass

² :Qs c 2Ž .
First moment—centroid

² :Qx s cx 3Ž .i i

Second moment—spread

² :Qs s c x yx x yx 4Ž .Ž . Ž .i j i i j j

Evolution equations for these moments can be derived from the advection–diffusion
equation, and involve turbulent fluctuation correlations. A turbulence closure model for
the fluctuation terms due to ambient atmospheric turbulence, appropriate for a passive

w xtracer release, is described in Refs. 11,13 . The puff moment equations for a passive
tracer are included in Appendix A. Dynamical effects due to puff buoyancy require
extension to the passive tracer model, and we now discuss the methodology.

Buoyancy dynamics requires the storage of additional variables for each puff. The
model for positively buoyant releases is based on the conservation equations for

² : ² :buoyancy, u , and vertical momentum, w , where u is the potential temperature, wp p

is the vertical velocity and the subscript p denotes the dynamic puff perturbation from
the local ambient atmospheric value.

The evolution of the mean dynamic variables is based on the Boussinesq momentum
equation and the conservation of potential temperature, giving

d g
² : ² :w s u 5Ž .p pd t T0

d Eu B² : ² :u sy w 6Ž .p pd t Ez
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where u is the ambient potential temperature. These equations neglect the pressureB

gradient in the momentum equation, and simply represent the buoyant acceleration term
Ž .in Eq. 5 and the change in buoyancy due to vertical motion through a potential

Ž .temperature gradient in Eq. 6 .
Ž . Ž .The mean dynamic variables in Eqs. 5 and 6 determine the equilibrium rise of a

buoyant puff in a stable atmosphere, where the ambient temperature gradient is inverted
Ž .i.e. positive , but the solution will oscillate indefinitely about the equilibrium level. The
vertical velocity itself will be damped, due to turbulent entrainment which increases the
effective volume of the integrals, but the integrated momentum and buoyancy will be
undamped. While the buoyancy is strictly conserved, the integrated vertical momentum
will actually be reduced due to the generation of gravity waves, and the oscillation will
be damped. This effect is represented by a simple linear damping on the vertical velocity

Ž .integral, so that Eq. 5 becomes
d g
² : ² : ² :w sy u yc N w 7Ž .p p w pd t T0

where N is the Brunt–Vaisala frequency and c s0.1. N is only defined non-zero forw

stable temperature gradients and a damping coefficient of 0.1 is chosen to provide a
reasonably rapid adjustment to the equilibrium height.

Tracking the independent evolution of the dynamics of each puff is not sufficient,
however, to model the buoyant rise effects since these effects are interactive. A plume of
positively buoyant gas rises differently from an isolated buoyant puff because the flow
field induced by the buoyancy has an influence on other parts of the plume. These
effects are represented by means of correlation integrals for the momentum and
buoyancy, which account for turbulent fluctuations in addition to the non-linear interac-
tions. The correlation equations are written as

X X² :d g w cp² : ² : ² :w c sy u c yc N w c y 8Ž .p p w pd t T t0 c
X X² :d Eu u cB p² : ² :u c sy w c y 9Ž .p pd t E z tc

w xwhere t is the fluctuation dissipation timescale 13 which must be modified to accountc

for the dynamically-induced turbulence. The turbulence model will be described below.
Ž . Ž .Note that the turbulent dissipation terms, the last terms in Eqs. 8 and 9 , involve

the fluctuation correlations, which are defined as
X X² : ² : ² :w c s w c y w cp p p

X X² : ² : ² :u c s u c y u cp p p

² : ² :The mean overlap integrals, w c and u c , are calculated in a manner similar to thep p
2² : w xmean concentration overlap terms, c , as described in Ref. 13 . This effectively

assumes the same Gaussian distribution for both vertical velocity and potential tempera-
ture. Thus, we estimate

Ža . Ž b .Ža . Ža . Ž b .² : ² : ² :u c sQ u G x G x 10Ž . Ž . Ž .Ýp p
b
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Ža .Ž .where the superscripts denote puffs numbered a and b , and G x is the Gaussian
Ž . Ž .shape function for puff-a defined in Eq. 1 . The summation in Eq. 10 is taken over all

puffs and multiplies the temperature field due to puff-b by the concentration field due to
puff-a . This could result in n2 overlap terms for a calculation with n puffs, but
SCIPUFF eliminates unnecessary calculations using an efficient scheme to determine
which interaction pairs are significant. Overlapping puffs are also merged together, so

w xthat the total number of puffs is minimized 10 .
The dynamic correlations provide an additional vertical velocity component, which is

added to the ambient velocity field used to transport the puff centroid. Thus, the
equation for the vertical component of the centroid location becomes

d z
sw x qw 11Ž . Ž .ˆpd t

where w is the ambient vertical velocity and the dynamic rise velocity is given by

² :w cp
w s . 12Ž .ˆp Q

We note that the model only represents the vertical component of the internal puff
momentum, so that the rise can be calculated. The horizontal velocity is not perturbed
from the ambient wind field.

2.2. Buoyant gas representation

Buoyancy effects can arise directly from a density difference between the ambient air
and the gas material. This is particularly important for dense gas effects, discussed in the
Section 2.4, but is introduced here for the simpler case of buoyant rise. If the gas is
lighter than air, then it will tend to rise without any temperature perturbation. In this
case, the buoyancy variable is actually

u D r
g ymž /T r0 0

where m is the mass mixing ratio, r is the ambient air density and D r is the density0

difference r yr . Since the local species concentration value, c, is equal to mr ,gas 0 gas

we can define the total gas buoyancy as

u cD r
bs y .

T r r0 gas 0

In order to treat non-Boussinesq density perturbations associated with very dense
gases, we modify the gravity term so that the effective acceleration due to the gas
density difference cannot exceed g. The correction factor of 1qb in the denominator is
only applied for positive density perturbations, since lighter-than-air materials must still
accelerate the surrounding air mass, sometimes known as the added mass effect.
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The dynamic puff integral equations are thus modified to give

² :d g bp² : ² :w s yc N w 13Ž .p w pˆd t 1qb

for the buoyant gas puffs, and

X X² : ² :d g b c w cp p² : ² :w c s yc N w c y 14Ž .p w pˆd t t1qb c

X X² :d b cp² :b c sy 15Ž .pd t tc

for all puffs. The non-Boussinesq density correction is defined as

² :b cp
b̂smax 0, 16Ž .ž /² :c

Note that the buoyancy correlation term is simply damped toward the mean overlap
value, which is computed in the same way as the temperature overlap.

2.3. Turbulent entrainment

The velocity field induced by the dynamic rise of a cloud is turbulent and the ambient
diffusion is enhanced by the internal turbulence of the cloud. The additional entrainment
and dissipation is modeled using an estimate of the internal turbulent velocity and length

w xscales. The entrainment model is based on earlier work on power plant plume rise 12
and relates the turbulent velocity to the vertical rise rate. We define

V 2
2 2q sF Ri w c qc . 17Ž .ˆŽ .p p p p q1 q2 2 2ž /V q ŵp

The entrainment factor contains a term that depends on the ambient wind speed, V,
which models the increased entrainment in a bent-over plume due to the vortex pair
formation. The stability factor

F s1q4Ri 18Ž .p p

represents the increased turbulent energy production due to buoyancy-driven instabili-
ties. The puff Richardson number is defined as

ˆ< <gL bp p
Ri s 19Ž .p 2ŵp

where L is the length scale of the internal turbulence. The dynamic buoyancy variablep

is defined similarly to the dynamic vertical velocity as

² :b cp
b̂ s .p Q
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The dynamic length scale, L , is defined equal to the concentration fluctuation lengthp
w xscale, L 13 , since this represents an instantaneous scale for the dispersing cloud. Thec

Ž .empirical coefficients in Eq. 17 are chosen as c s0.4 and c s3.0 from fitting jetq1 q2

rise data, as discussed below. Additionally, an upper limit of 2 is imposed on F top

prevent excessive entrainment velocities.
The dynamic velocity and length scales are used to define a dynamic diffusivity,

Ž .which is added to the spatial moment equations see Appendix A to give
X X X X X X² : ² :ds Eu Eu x u c x u ci j j i i j j i

ss qs q q q2 K d 20Ž .i k jk p i jd t Ex Ex Q Qk k

where

K s0.15q L . 21Ž .p p p

The dynamic turbulence also modifies the rate equations for the internal length
scales, so that we obtain

d Lc ambsq q0.15q 22Ž .c pd t
w xwhere the first term accounts for the ambient turbulence 13 . An additional term is also

included in the fluctuation dissipation timescale, t , to account for the internallyc

generated turbulence. Since the length scale for the dynamic turbulence is already
assumed to be equal to the instantaneous fluctuation scale, the additional term is simply
proportional to the effective energy dissipation time scale.

2.4. Dense gas dynamics

The puff treatment of buoyancy-driven dynamics described in Section 2.3 must be
modified for the description of negatively buoyant dense gas dispersion. The most
important feature of dense gas dynamics is the interaction with the solid ground surface,
which causes lateral spreading as the dense cloud collapses and suppresses the vertical
diffusion due to the stable density distribution. We first address the dynamic spreading
effect, where the gravitational forcing term drives motion parallel to the ground instead
of a vertical acceleration. The gravitational force is still directed vertically, but the
lateral motion is induced by the pressure gradient, which was ignored in the buoyant rise
situation. We therefore require a treatment of the equations of motion that include the
surface-induced pressure gradient.

A convenient starting point for modeling the dynamics is the vorticity equation,
obtained by taking the curl of the momentum equation,

Ev Ev Eu Eb E2vi i i i
qu sv q´ g qn 23Ž .j j i jk j

Et Ex Ex Ex Ex Exj j k j j

where vs==u is the vorticity, n is the kinematic viscosity and the buoyancy forcing
is written in the same form as in Section 2.3. Note that the pressure gradient term is
absent in this formulation. Forming the vertical component of the vorticity moment

Pse P x=vŽ .3
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where e is the unit vector in the vertical direction, and integrating over all space, we3

obtain
d
² : ² :P sg b qS 24Ž .p Pd t

where S represents a surface integral term. Ignoring the surface term for the moment, itP

is evident that P is very closely related to the vertical momentum integral in Section
² :2.3. In fact, far from a solid boundary, P satisfies exactly the same evolution equation

² :as w and can therefore be identified as the integrated vertical momentum.p
Ž .In order to use Eq. 24 as a basis for the dense gas puff dynamics, we must represent

the surface integral term and relate puff motions to the vorticity moment integral. Since
the velocity field strictly vanishes at a solid boundary, the surface integral S involvesP

only the viscous diffusion terms; we therefore represent it as a drag term, whose detailed
specification will be described below. The relationship between the vorticity moment
integral and the puff dynamics is based on a simple shape assumption for the induced
velocity field, since the relation between velocity and vorticity is linear. This allows us
to superpose the velocity fields from neighboring puffs by simple addition and represent
the interactions between a collection of dense puffs. The vorticity moment evolution Eq.
Ž .24 also depends linearly on the buoyancy integral, so that summing the moments of
individual puffs can also represent the total vorticity moment. The puff evolution is still
non-linear as the dynamic fields are composed of the summation over all puffs, but the
puff moments evolve independently and the basis of the dynamics is contained in the
shape assumption for the velocity field.

In general, the velocity field induced by a dense gas cloud involves an outward radial
flux in the cloud itself, spreading the material horizontally over the ground surface. This
horizontal divergence is accompanied by a vertical velocity gradient as material moves
downward toward the ground. A schematic cross-section is illustrated in Fig. 1. This
flow field is associated with azimuthal vorticity and we can obtain a general relation
between the velocity magnitude and the vorticity moment.

If we assume that the magnitude of the horizontal radial velocity is U , the radial0

dimension is L , and the vertical dimension is L , then the vorticity magnitude will beH V

Fig. 1. Schematic illustration of slumping dense cloud.
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U rL . This neglects the horizontal gradient of the vertical velocity component in the0 V

definition of vorticity, but this contribution is negligible when the cloud is shallow in
comparison with its width. An order of magnitude estimate for the vorticity moment is
thus obtained as U L3 , using L as the magnitude of the radial vector, x, and L2 L as0 H H H V

the volume estimate.
A simple assumption for the radial velocity field uses the Gaussian form to give

r r 2

u sU exp y . 25Ž .r 0 2ž /L LH H

This satisfies the linear gradient requirement at the center of the puff and vanishes at
large distances. We cannot assume circular symmetry since SCIPUFF uses a generalized
Gaussian description and the velocity shape assumption must be applied to elliptical
puffs. As an asymptotic condition, we consider the extreme case where the ellipse
becomes an infinite line and require that the spreading velocity be directed transverse to
the line. Using this condition to define the limiting behavior, the radial distribution given

Ž .in Eq. 25 can be generalized to an elliptical shape as

X L X 2 Y 2
Y

u sU exp y yX 0 2 2ž /L L L LX H X Y

Y L X 2 Y 2
X

u sU exp y y 26Ž .Y 0 2 2ž /L L L LY H X Y

where X and Y are the principal coordinates in the horizontal plane for an elliptical puff,
with the puff centroid as origin, and 2 L2 sL2 qL2 . The length scales, L and L , areH X Y X Y

related to the semi-major axes of the puff as

s qs 1x x y y 2 2L sC " s ys q4s 27Ž . Ž .(X ,Y d1 x x y y x yž /2 2

and the empirical coefficient C is chosen to be 1.5. Note that the velocity componentsd1
Ž . Ž .in Eq. 26 must be rotated from the frame of the principal axes into the x, y

calculation coordinates. Horizontal velocity gradients are computed by differentiating
Ž .Eq. 26 and rotating the four components appropriately. In principal axes coordinates,

the velocity gradients are

Eu X 2 U L X 2 Y 2
X 0 Y

s 1y2 exp y y2 2 2ž / ž /EX L LL L LX HX X Y

Eu Y 2 U L X 2 Y 2
Y 0 X

s 1y2 exp y y2 2 2ž / ž /EY L LL L LY HY X Y

Eu U X 2 Y 2
X 0

sy2 XY exp y y2 2ž /EY L L LH X Y

Eu U X 2 Y 2
Y 0

sy2 XY exp y y . 28Ž .2 2ž /EX L L LH X Y
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The scaling velocity, U , is related to the vorticity moment, which we identify with0
² :w . Integrating the moment of the vorticity based on vertical gradients of the velocityp

field, we obtain

² :w Lp H
U sy . 29Ž .0 2 2p L LX Y

Specification of the individual puff velocity field leads to the evolution equations for
the puff moments, using both velocity and velocity gradients. These quantities are
calculated at the puff centroid location by summing the contributions from all the
overlapping puffs. Note that a single puff has zero mean velocity at its centroid, since

Ž .the components in Eq. 26 vanish when XsYs0, but the two diagonal gradients in
Ž .Eq. 28 are non-zero, so the puff is stretched in the horizontal plane.

The dynamically induced velocity and velocity gradients are simply added to the
ambient flow field to produce the total transport and distortion of the puffs. The vertical
velocity gradient is defined from the sum of the two horizontal divergence components,
maintaining a total divergence of zero. The vertical component of velocity is defined
from the velocity gradient, assuming zero as the surface boundary condition. Thus,

Ew Eu EÕd d d
sy q 30Ž .ž /Ez Ex E y

where the subscript d denotes the overlap sum from all contributing puffs with dense
dynamics. The vertical velocity of the centroid is defined as

Ew zd
w sz exp y 31Ž .d ž /Ez LcV

where z is the puff centroid height. L is a representative vertical scale height for thecV
Ž .puff and satisfies a similar equation to the internal puff scale, L , in Eq. 22 . Thec

‘slumping effect’ is manifested through the inclusion of the vertical velocity gradient,
Ž .given by Eq. 30 , in the equations for both the vertical spread, s , and the verticalz z

Ž .scale, L . The exponential decay factor in Eq. 31 is introduced to limit the descentcV

velocity for puffs further from the surface. The horizontal stretching motion for a single
puff is thus associated with a vertical compression and downward motion of the
centroid.

The dense gas effects are only calculated for puffs that interact with the ground
surface. Negatively buoyant puffs remote from the surface will simply fall downward
under the buoyancy forcing described in Section 2.1. Puffs are judged to interact with

² :the ground when they have negative vertical momentum, w c , and their centroid isp

less than 2 L above the ground. The first requirement ensures that they are descendingcV

and the second checks that they are in contact with the ground. When these conditions
are satisfied, the ambient temperature gradient term in the buoyancy correlation equa-

Ž . Ž .tions, Eqs. 6 and 9 , is neglected, since the vertical velocity integral is interpreted as a
vorticity moment and there is no vertical transport at the solid surface.

The model for the ‘slumping’ velocity presented above may seem much more
complicated than the representation used in existing dense gas dispersion models such as
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w xHGSYSTEM 15 . Most simple models calculate the horizontal spread velocity from a
pseudo-balance between the kinetic energy of the horizontal motion and the potential
energy associated with the density perturbation, using the simple relation

ryra
u A gH 32Ž .slump ( r

where H is the cloud depth, r is the cloud density and r is the ambient density. Thisa

relationship is not derived from the momentum conservation equations, however, and is
not readily generalized to describe the effects from overlapping puffs. Under simplified

Ž . Ž .conditions, the more fundamental model given by Eqs. 25 – 29 can be shown to
Ž .predict similar behavior to Eq. 32 . In particular, if we neglect all turbulent entrainment

and assume small density perturbations, it can be seen that

d
² : ² :w sg b 33Ž .p pd t

and

d
² :b s0 34Ž .pd t

i.e. the total buoyancy is conserved and the vertical momentum, or vorticity moment,
increases linearly with time. For a circular puff, the spreading velocity scale is given by

² :wp
U sy 35Ž .0 3p LH

and the lateral scale L thus increases according toH

d L tH
AU A 36Ž .0 3d t LH

giving a growth of the lateral scale proportional to t1r2, consistent with the simple
model prediction. For a ‘line’ puff, with L 4L , we haveX Y

EuX
(0

EX

Eu UY 0
( 37Ž .

EY LY

and

² :wp
U s . 38Ž .0 2p L LX Y

The volume integral will be proportional to the ‘line’ length, L , so the effective spreadX

velocity will be inversely proportional to L2 . The results in a lateral spread proportionalY

to t 2r3, again consistent with simple model predictions for a line source.
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2.5. Dense gas effects on turbulent entrainment

The presence of the ground introduces stability effects on the turbulence in addition
to the pressure gradient effects of the mean velocity field. In a free atmosphere, any
density perturbation forms a stable vertical gradient on one side and unstable on the
other. A free dense cloud is unstable on the lower side, while a positively buoyant
perturbation is unstable on the upper side. However, when the density perturbation is
constrained by the ground surface, a stable gradient is established throughout the cloud.
The density gradient suppresses vertical turbulent diffusion since vertical motions
transfer kinetic energy to potential energy as the density perturbations are mixed. This
mechanism applies to the ambient turbulent motions as well as the dynamically induced
motions in the slumping dense cloud.

When a puff is determined to interact with the ground, as given above, a dense cloud
turbulence entrainment model is applied. The framework is similar to the buoyant rise
parameterization in Section 2.3, but we use the following velocity and length scales
appropriate for a stably stratified dense cloud.

The internal velocity scale for a dense gas puff is based on the lateral velocity since
vertical motion is constrained. Similarly, the length scale is based on the vertical scale of
the cloud as the turbulent eddies are also constrained by the solid boundary. The internal
turbulent velocity scale is given by

q2 sc F 2 Ri V 2 39Ž . Ž .d q1 d d d

where

2Ewd2 2 2V su qÕ q s qs 40Ž . Ž .d d d x x y y ž /Ez

1
F s 41Ž .d 1qC Rid2 d

and

ˆ ˆ< <gL u rT ybd p 0 p
Ri s . 42Ž .d 2 2V qVd

The dynamic velocity scale V represents the ‘slumping’ motion in the dense cloud.d

The gradient term is required to provide the velocity scale for the self-induced motions
Ž .in a puff, since the mean self-induced velocity Eq. 26 is zero at the puff centroid. The

internal dynamic scale, L , is taken to be the vertical puff scale, L , since the verticald cV

cloud depth characterizes the shear-generation scale. The Richardson number is based on
the total velocity, because the effective stability is determined by the balance between
buoyancy and shear and ambient motions are included in this balance. The coefficient in

Ž .Eq. 41 , C , is chosen to be 25 on the basis of comparisons with laboratory data.d2

In addition to the stability effect on the internally generated turbulence, the formation
of a stable layer at the ground affects the ambient turbulence and mean velocity profile.
Boundary layer turbulence is principally driven by interaction with the ground surface,
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and the reduction of vertical transport through the dense cloud layer can significantly
modify the local profiles. We represent this effect by applying the damping factor F tod

X X X² :the ambient vertical eddy diffusivity, z w c rQ, as defined in Appendix A The
distortion of the mean ambient velocity profile is represented by reducing the puff

w xcentroid velocity by a factor 0.7q0.3F . This follows the suggestion in Ref. 7 basedd

on field experiments with significant density effects.
The turbulent diffusivity, dissipation timescale and internal horizontal scale equation

Ž . Ž .are modified as in Eqs. 21 and 22 , but using q and L in place of q and L .d d p p

2.6. Surface drag

As the dense cloud moves over the ground surface, the frictional drag of the rough
surface tends to reduce the lateral slumping rate. This effect is represented by the surface

Ž .integral terms in Eq. 24 . We represent the drag effect through a damping coefficient on
Ž . ² : Ž ² :. ² :the vertical momentum or vorticity moment integrals, w or P and w c . Inp p

addition, the interaction with the ground introduces a heat flux directly into the cloud
and we assume that this exchange rate occurs at the same rate as the momentum
exchange. The damping is therefore applied also to the temperature perturbation
integrals.

The surface time scale is based on the roughness length, z , and a logarithmic0

wall-layer assumption. An inverse time scale is defined as

1 Euby1t s 43Ž .w u Etb

and we assume that

Eu Etb
s

Et Ez

where t is the turbulent momentum flux. We then use the cloud height scale and the
wall-layer relation between the surface stress and local wind speed to obtain

2 2 2(V qVL ddy1t s k log 1q . 44Ž .w ž /ž /z L0 d

3. Buoyant rise test calculations

The vertical rise dynamics in SCIPUFF have been tested principally against idealized
laboratory experiments or in comparison with well-accepted empirical relations based on
laboratory and field experiments. These include momentum jets in a cross-flow, and
buoyant plumes in neutral or stable temperature gradients with a crossflow.
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3.1. Momentum jet

Ž .The first experiments considered are momentum jets no buoyancy in a crossflow.
w x Ž w x.Ref. 4 from Ref. 6 presents near-source data for a variety of exit velocity ratios,

RsW rU , where U is the crossflow velocity and W is the jet exit velocity. The jet0 a a 0

source in SCIPUFF is characterized by a momentum flux F and Gaussian spread s ,m 0

so that W is estimated by assuming an initially uniform velocity distribution such that0

W 2 sF rr 2, where r is the source radius. We also assume that s sr . A compari-0 m 0 0 0 0

son with the mean jet centerline data of Gordier is shown in Fig. 2. SCIPUFF tends to
under-predict the jet heights; this is particularly so near the source, but the discrepancies
tend to decrease with downstream distance. The high R data show much less down-
stream displacement of the jet close to source; this is probably due to distortion of the
background flow, a phenomenon not included in the SCIPUFF model.

The asymptotic behavior of the momentum jet far downstream is also of interest and
Ž w x w x.here we compare SCIPUFF with the well-known expression see Refs. 14 or 2

1r3X 1r3z 3 x
s 45Ž .2 ž /ž /ll llbm m

where x is downstream distance, zX is the jet centerline height above the source, b is an
empirical entrainment constant typically set to 0.6, and the momentum length scale

Ž . XFig. 2. Momentum non-buoyant jet centerline height, z , as a function of downstream distance for a range of
w x Ž w x.R. Symbols are the data in Ref. 4 from Ref. 6 , solid lines are the SCIPUFF predictions.
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ŽFig. 3. Comparison between SCIPUFF predictions of momentum jet centerline heights for a range of R solid
. Ž . Ž .lines and the ‘one-third’ law, 45 , with two values of b short dashes, b s0.6; long dashes, b s0.5 .

ll sRr . Fig. 3 shows the SCIPUFF calculations for three velocity ratios compared0m
Ž .with Eq. 45 . It can be seen that while there is naturally some initial dependence on R,

the three cases show the same asymptotic behavior. The model predictions are consistent
with the one-third power law but indicate a value for b around 0.5.

3.2. Buoyant plume

For a buoyancy-dominated plume in a neutral background, the plume height is given
w xby the ‘two-thirds’ power law 2 :

1r3X 2r3z 3 x
s 46Ž .2 ž /ž /ll ll2bb b

where the buoyancy length scale is given by ll sF rU 3. The buoyancy flux, F , isb a bb

defined as F sW r 2 gDT rT where DT is the source temperature perturbationb 0 0 0 a 0

relative to the ambient temperature T . The ‘two-thirds’ law has been shown to comparea
w xwell with numerous field and laboratory data 2 . The ‘one-third’ and ‘two-thirds’ laws

w xare essentially limiting cases of a more general expression 14 . Thus, for plumes with
significant buoyancy and momentum fluxes, the trajectory is given by

1r32X 2z 3 ll x 3 xms q 47Ž .2 2 ž /ž /ll ll ll llb 2bb b b b
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Ž .Fig. 4. Comparison between SCIPUFF predictions for buoyancy-dominated jet centerline heights solid lines
Ž . Ž . Ž . 2 4 Ž .and theory given by Eq. 47 dashed lines . Case A Rs10, F rU F s0.01; Case B Rs10,b a m

2 4 Ž . 2 4F rU s1; Case C Rs1, F rU F s1.b a b a m

Ž . 2 Ž . 2which reduces to Eq. 46 for x4 ll rll and to Eq. 45 with x< ll rll . Am b m b
Ž .comparison of Eq. 47 with the SCIPUFF predictions for a range of buoyancy fluxes

Fig. 5. Comparison of SCIPUFF buoyancy-dominated jet centerline heights in a uniformly stratified back-
Ž . Ž . Ž . Ž . Ž . 2 4ground solid lines with 48 and 49 dashed lines . For all cases, Rs10. Case A F rU F s0.01,b a m
4 Ž . 2 4 4 Ž . 2 4 4F NrU s0.00572; Case B F rU F s1, F NrU s0.00572; Case C F rU F s1, F NrU sb a b a m b a b a m b a

0.181.
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and source sizes is shown in Fig. 4. As expected, there are some discrepancies near the
source, but the agreement with the two-thirds law is excellent further downstream.

Ž 2 .Plume rise in a uniformly stratified environment N sa positive constant has been
w xinvestigated in Ref. 2 which gives the following expression, which accounting for the

‘added mass’ due to the displacement of ambient fluid by the plume:
1r3 1r3X X Xz 3 F N x N xmXs N sin q1ycos 48Ž .1r3 X 2 ž /ž /X 2 F U Ub b a aF rU NŽ .b a

X X Ž .1r2 X Ž .1r2for N xrU Fp where N sNr 1qk , b sbr 1qk and k is the addeda Õ Õ Õ

Ž .mass coefficient set to 1, the value for a circular cylinder . Based on an extensive
w xsurvey of field and laboratory data, Ref. 2 also determined an empirical expression for

the ‘final’ plume rise in stable air as
1r3X 2z s2.6 F rU N . 49Ž .Ž .final b a

The SCIPUFF predictions for a range of buoyancy fluxes and stability gradients
Ž . Ž .compare favorably with Eqs. 48 and 49 , as shown in Fig. 5.

4. Dense gas test calculations

4.1. Laboratory data comparisons

Preliminary calculations were made with the dense gas model to determine the
empirical coefficients used to set the horizontal length scale for the velocity field and the
Richardson number damping factor.

w xThe simplest test flow is the collapse of a volume of dense gas in still air. Ref. 8
reports on a laboratory study of this idealized case and their data have been utilized to
define the empirical coefficients in SCIPUFF. The second laboratory experiment used to

w xdefine model coefficients is the wind-tunnel study in Ref. 3 , where a continuous plume
of dense gas was released into a neutral boundary layer.

w xFig. 6 shows the comparison between the model predictions and the data in Ref. 8 .
The figure shows concentration vs. time for three near-surface sampler locations at
non-dimensional distances of 2.6, 5.8 and 9.2 from the center of an initial cloud of
volume 54 l and density ratio 2.90. Results from three independent experiments are
shown, illustrating the variability in the instantaneous concentration field. The radial
distance is made non-dimensional using the cube root of the initial volume, which is a
cylinder with height equal to the diameter. The important features of the comparison are
the arrival time of the gas at the various samplers, which is largely controlled by the

Ž .velocity spread coefficient C in Eq. 27 and the magnitude of the concentration,d1

which is controlled by the damping coefficient, C . The model predictions are clearlyd2

much smoother than the observed concentration time history, as expected for an
ensemble average prediction. The initial peak in the concentration, most noticeable at
the closest sampling location, is due to the rolling vortex at the leading edge of the
density current. This feature is not represented by the integrated puff equations with the
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w xFig. 6. Comparison between SCIPUFF prediction and the laboratory data in Ref. 8 . Measurements of the
concentration time history at zs0.6 cm from three realizations are shown for non-dimensional distances of
Ž . Ž . Ž . Ž . Ž .a 2.6, b 5.8, c 9.2; the ensemble average model predictions are shown at the same locations in d , e and
Ž .f , respectively.

Gaussian shape assumption, but is also subject to significant random variability so that
the peak would be reduced in a true ensemble average. The arrival time of the main
cloud and the magnitude of the concentration at the three samplers are reasonably
represented by the puff calculation.

w xFigs. 7 and 8 show horizontal and vertical profiles from Ref. 3 compared with the
SCIPUFF predictions at two downstream locations. Measured velocity and turbulence
profiles were used to define the flow field for the dispersion calculation. The figures
show the differences between a passive release and a dense release of CO with a2

density of about 1.5 times that of ambient air. The model predictions show reasonable
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w xFig. 7. Horizontal plume cross-sections at ground level. Data points are from Ref. 3 . Solid line is model
Ž . Ž . Ž . Ž .prediction. a neutral release at xs0.6 m, b neutral release at xs5 m, c dense release at xs0.6 m, d

dense release at xs5 m.

agreement with the data and illustrate the effect of the gas density. The dense gas results
show a wider plume than the passive case and a restricted vertical diffusion. There is
good agreement for concentration values above 10% of the surface value for the near
source location. However, the shape of the measured profile is not Gaussian. Since the
shallow plume near the source is represented by a single Gaussian puff in the vertical
direction, SCIPUFF does not match the experiment at the higher positions. At the
downstream location, the puffs have split vertically and provide a much better descrip-
tion of the profile shape. The initial profiles would be better described by a different
shape function, and this could be implemented for surface-based puffs, but we note that
the Gaussian assumption does provide a good description for the higher concentration
values.

4.2. Field data comparisons

Ž .The Model Data Archive MDA , compiled by Sigma Research, is an extensive
collection of field experiment data for both dense and passive tracer gas releases. The
data set contains both continuous and instantaneous sources with different sampling
times and has been used to evaluate a number of existing atmospheric dispersion models
w x5 . Using the model coefficients defined from the preliminary test calculations, SCIPUFF

Ž .has been compared with the test cases in the Model Data Archive MDA .
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w x Ž .Fig. 8. Vertical plume cross-sections. Data points are from Ref. 3 . Solid line is model prediction. a neutral
Ž . Ž . Ž .release at xs0.6 m, b neutral release at xs5 m, c dense release at xs0.6 m, d dense release at xs5

m.

The experimental data are divided into a passive release set and a dense gas release
set. The passive releases are relatively straightforward, since the only source parameters
are the mass flow rate and the source size. The initial standard deviation of the puffs is
set equal to the source radius for these releases, which include the Prairie Grass and
Hanford data. The dense releases are for evaporating pools, and we use a lateral standard
deviation of 75% of the specified pool radius and a vertical standard deviation of 0.5 m
for all cases. The vertical size is chosen arbitrarily to represent a typical vertical growth
during transport across the pool, and results are not sensitive to the precise value. The
initial buoyancy flux was determined from the given mass flux and the difference
between the gas boiling temperature and the ambient value. We assume that the
vaporizing material is released at the boiling point, so the buoyancy flux is

Q T yT cŽgas.Ž .b a p
F s 50Ž .B Žair .r cair p

where c is the specific heat, T is the boiling point, T is the air temperature, and Q isp b a

the mass flow rate. The dense gas releases include the Maplin Sands, Burro and Coyote
tests.

Two special cases were the Desert Tortoise and Goldfish releases, since they involve
a two-phase aerosol and exothermic reaction with the environment. SCIPUFF does not
contain a model for aerosol evaporation and the thermodynamics of the reactions were
not prescribed. A simple linear expansion model was used to estimate the distance to
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complete evaporation, and the initial buoyancy flux was then based on the total latent
heat transfer.

Whenever possible, the meteorology for the dispersion calculation was specified
using a surface heat flux estimate. Many of the data sets include an estimate of the
Monin–Obukhov length, which is equivalent to a heat flux specification if the surface
friction velocity is known. All cases include a wind speed at a reference height and
Pasquill stability category was used only when the heat flux was unavailable. Mean
velocity profiles were prescribed using surface layer similarity and turbulence profiles
were based on the friction velocity and heat flux.

The data specifies an averaging time for the concentration data and both short and
long duration averages are included. The measurements provide the maximum recorded
concentration, over all sampling locations at a given distance and over the sampling
period. For the long duration measurements, which usually correspond to the release
duration, the model is run with the sampling period, T , as the appropriate averagingavg

time for filtering the turbulence, and the centerline maximum prediction is used for
comparison. For the short duration data, we use the statistical SCIPUFF prediction to
estimate the expected value. When a short duration peak, say a 1-s average, is reported
from a number of samplers over a sampling period, T , it must be recognized thatsample

this peak value is a random variable. For an idealized continuous release of infinite
duration, we expect the maximum observed value to increase as the sampling period
increases, since there is a higher probability of measuring an extreme value. In order to
model the expected peak value, we use the predicted probability distribution for the
centerline concentration, c , using a turbulence filter timescale of T . If only one0 avg

Ž .measurement in time of the maximum concentration over a number of sampler
locations across the plume is made, then the expected value would be c . However, if0

we sample for a longer time, then the expected peak value must increase since the
chances of encountering a higher value are increased.

Suppose that the probability density function for c is such that0

Prob c -X sP X .Ž . Ž .0 0

Then, if the maximum from N independent observations of c is denoted as c , then0 N

N
Prob c -X sP X s P XŽ . Ž . Ž .N N 0

since all N observations must be less than X. If we can estimate N, therefore, we can
determine the expected value of c as the predicted value for the observed maximumN

concentration. We estimate N from the behavior of the concentration fluctuation
variance with averaging time, which is reduced by a factor of

2
ybby1qeŽ .2b

w xwhere bsT rT and T is the integral timescale of the fluctuations 9 . If wesample c c

identify this reduction with the factor 1rN for the variance reduction from averaging N
independent samples of a discrete variable, then we obtain

2
y1 ybN s by1qe . 51Ž .Ž .2b
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The calculation procedure, therefore, is:
X 2Ž .a reduce c to account for the averaging time, T ;avg

Ž . Ž .b determine the clipped normal distribution P X for the reduced variance;0
Ž . Ž .c determine the exponent N from Eq. 51 ;
Ž .d calculate the expected maximum value from the distribution P .N

Results for the overall comparison are shown in Fig. 9, for the passive, and Fig. 10,
for the dense gas data sets. The overall agreement with the range of data is relatively
good and shows better performance for the passive releases than the dense cases. There
is evidence of a slight under-prediction in the dense results, particularly for the lower
concentration levels further downstream. Unfortunately, the data do not provide suffi-
cient information to determine the cause of the under-prediction, which may be in the
source specification, the lateral slumping representation or the vertical mixing rate. The
overall performance is comparable with the best of the existing models. Most of the
predictions are within a factor of 2 of the observations and there is reasonable skill in
predicting the effect of time averaging on the maximum concentration.

Fig. 9. Scatter plots for SCIPUFF predictions of the MDA passive release data sets.
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Fig. 10. Scatter plots for SCIPUFF predictions of the MDA dense gas release data sets.

w xTable 1 presents the geometric mean and variance measures defined in Ref. 5 . The
geometric bias is defined as

1
MGsexp Ý ln My ln PŽ .ž /N

and the geometric variance as
1 2VGsexp Ý ln My ln PŽ .ž /N

where P is the predicted and M the measured value. N is the number of measured
values in the data set.

Table 1
Performance measures for the MDA test cases

Data sets N MG VG

Dense cases 217 1.06 1.33
Passive cases 244 1.00 1.31
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5. Conclusion

A methodology has been described for including dynamic effects in a Lagrangian
puff model. The technique can represent buoyant rise of a puff or plume and can also
describe dense gas effects. The interaction between puffs is accounted for by an overlap
integral, which provides a general model for arbitrary sources. Finite duration effects or
general unsteady sources can be modeled, in addition to multiple sources.

Buoyant rise is modeled using the vertical momentum integral to provide a rise
velocity. The effects of turbulent entrainment and a stable ambient atmosphere are also
included. Dense gas effects are particularly complicated, since the interaction with the
ground prevents a simple vertical motion, and induces lateral spreading. A vorticity
moment representation is used to obtain integral equations for the puff and a simple
shape function relates the dynamic velocity field to the moments.

The model requires a small number of empirical coefficients, which have been
chosen to fit experimental data. The puff conservation equations are based on momen-
tum and buoyancy conservation and are consequently able to reproduce the proper
dependence on external parameters such as wind speed, stability gradients and source
fluxes. Quantitative agreement with observational data is then obtained by adjusting the
empirical constants in the puff equations. The SCIPUFF predictions have been compared
with a reasonably wide range of observations, covering plume rise due to buoyancy and
momentum, and also a number of dense gas dispersion experiments.
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Appendix A. Puff moment equations

A brief description of the evolution equations for the puff variables in the absence of
w xdynamic effects is included here. A more complete discussion can be found in Ref. 13 .

Using the mass conservation equation, the equations for the moments defined in Eqs.
Ž . Ž .2 – 4 are derived as

dQ
s0 A1Ž .

d t

d xi
su x A2Ž . Ž .id t

X X X X X X² : ² :ds Eu Eu x u c x u ci j j i i j j i
ss qs q q . A3Ž .i k jkd t Ex Ex Q Qk k
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The overbar denotes the ensemble average and fluctuations from the mean are
Ž . Ž .denoted by a prime. Conservation of total mass is expressed by Eq. A1 , while Eq. A2

moves the centroid with the mean wind. Turbulent diffusion is represented by the
Ž .fluctuation correlation terms in Eq. A3 and this equation also accounts for the effect of
Ž w x.velocity gradients on the puff spread see Ref. 10 .

This completes the specification of the puff moment equations, but we have intro-
Ž .duced turbulent flux moments in Eq. A3 . The turbulent fluctuations are modeled

w xempirically using turbulence closure techniques as described in Refs. 11,13 . The
equation for the moment of the lateral velocity correlation is

d q
X X X X 2 X X X² : ² :y Õ c sQÕ yA y Õ c A4Ž .

d t L

X 2where Õ is the variance of the lateral velocity component, q is the total r.m.s. velocity
fluctuation, L is the turbulence length scale and A is an empirical closure constant. The
vertical correlation moment satisfies a similar equation, but includes buoyancy terms.
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